If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2=90
We move all terms to the left:
5n^2-(90)=0
a = 5; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·5·(-90)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*5}=\frac{0-30\sqrt{2}}{10} =-\frac{30\sqrt{2}}{10} =-3\sqrt{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*5}=\frac{0+30\sqrt{2}}{10} =\frac{30\sqrt{2}}{10} =3\sqrt{2} $
| 2(3x+4)=6(x-2) | | 5x+3x=2x+21 | | 2p-2(4-2p)=2(p-4)-28 | | 6=x/2-15 | | (-13)x=-52 | | X^2-5x-336=0 | | (9)x=-63 | | 3(5x+9)=-42+54 | | 5(x=3)=4(x-3) | | 14y+29=127 | | 7(x-4)^2-3(x+5)^2=4(x+1)(x-1)-27(x-4)^2-3(x+5)^2=4(x+1)(x-1)-2 | | 3+4w-1-5=10 | | 5(x=3)+4(x-3) | | 7-3x=8x-15 | | 2/5(x-2/3)=-16/15 | | 8/3=x-7/3 | | 10+7x-5=5×-3+2(x+4) | | 8/3=x11/3 | | 2x*x-9x+7=0 | | 2(t-2)+2=2(2t+-5) | | –5x–6=19 | | 3-5a÷6=-10 | | 90+39+69+2x=180 | | 2x+7=x11 | | 42+92+68+2x=180 | | 60=7r-3 | | 2(x-3)=4-(5x-11) | | 5x-2(x-2)=19 | | 75+5x-10+6x-6=180 | | j−20=-1 | | 3(x-3)+1=15 | | f−9=-4 |